RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FIRST SEMESTER EXAMINATION, MARCH 2022 FIRST YEAR [BATCH 2021-24]

D T	ate ime	: 08/03/2022 : 11am-1pm	MATHEMA Paper : MTM	TICS A CC1 Ful	l Marks : 50
Group A Answer all the questions, maximum one can score 25.					
1.	Show	v that a non-al	elian group must contain at-lea	ast six elements.	[6]
2.	Wha	at is the remain	der when 7^{491} is divided by 6?		[2]
3.	Prov The	ve or disprove t re exist a non-a	he following statement: belian group of order 22 which	do not have any subgroup of	of order 11. [5]
4.	If a	and b are distin	act group elements, prove that ϵ	either $a^2 \neq b^2$ or $a^3 \neq b^3$.	[5]
5.	Let Find	G be a group s the order of G	uch that $600 < G < 1100$. Sup 4.	ppose G has subgroups of or	der 56 and 63. [4]
6.	Supj Find	pose a and b ard $o(ab)$.	e group elements such that $o(a)$	$) = 4, o(b) = 2$ and $a^3b = ba$.	[4]
7.	Com	pute: $((2 \ 4 \ 9))$	$(3\ 1\ 7\ 8)^{-1})^{-1}$ in S_{11} .		[4]
Group B Answer all the questions, maximum one can score 25.					
8.	(a)	Prove that $1 +$	$\sqrt{2} + \sqrt{3}$ is not a rational num	nber.	[4]
	(b)	Suppose $A \subseteq \mathbb{I}$ If sup $A = \lambda$ a	\mathbb{R} is bounded. and $\lambda \notin A$ show that λ is a limit	t point of A	[9]
	(c)	If $A \subseteq \mathbb{R}$ is un	countable, show that A has a li	imit point.	[2]
9.	(a)	Find all limit	points of $A = \{n + \sqrt{2} : n \in \mathbb{N}\}$	}.	[2]
	(b)	Find two sets	A, B in \mathbb{R} such that $(A \cup B)^{\circ} \neq$	$\not\in A^{\circ} \cup B^{\circ}.$	[2]
	(c)	Suppose F is a	a finite subset of \mathbb{Q} . Prove that	$\mathbb{Q} - F$ is dense in \mathbb{R} .	[2]
10.	(a)	If $A \subseteq \mathbb{R}$ and $\{x_n\}$ converge	r is a limit point of A , prove the s to r .	hat there is a sequence $\{x_n\}$	$\subseteq A$ such that [3]
	(b)	Suppose $\{x_n\}$ one of $\{x_n\}$ of	$\{y_n\}$ are two sequences in \mathbb{R} s $\{y_n\}$ necessarily bounded? Ju	such that $\{x_n y_n\}$ is convergentiating your answer.	ent. Is at least [3]
	(c)	Find the lims	$x_n x_n$ and $\liminf x_n$ where $x_n =$	$(-1)^n \left(1 + \frac{1}{n}\right) \forall n \in \mathbb{N}.$	[2]
11.	(a)	Let $f : \mathbb{R} \to \mathbb{R}$ $f(x) = \begin{cases} x, x \\ 2 - x \end{cases}$ Show that lim	be such that $x \in \mathbb{Q}$ $x, x \in \mathbb{R} - \mathbb{Q}$ f(x) = 1.		[3]
	(b)	Which of the $x \rightarrow 1$	ollowing sets is countable? Just	tify your answer.	
		i. $(\mathbb{R} - \mathbb{Q})$ – ii. $\mathbb{N} \times \mathbb{N}$.	$\left\{n + \sqrt{3} : n \in \mathbb{N}\right\}$	· ·	[2] [2]
			×		